Answer process:
Using the definition of trigonometric function of any angle, it can be deduced that when the vertex of angle 90 is at the origin and the starting edge coincides with the positive semi-axis of X axis, it is easy to know that the final edge of the angle is on the positive semi-axis of Y axis. If a point on the final edge is p (0, 1), the distance from point P to the origin is r= 1.
From the definition of trigonometric function from any angle, we can get: sin90 = y/r =1=1,COS90 = x/r = 0/ 1 = 0, TAN90 = y/x? Meaningless, COT 90 = X/Y = 0/ 1 = 0.
Extended data:
I. Related inductive formulas
cot(kπ+α)=cot α
cot(π/2-α)=tan α
cot(π/2+α)=-tan α
Kurt (-α) =-Kurt α
cot(π+α)=cot α
Kurt (π-α) =-Kurt α
Second, the function formula
1, product and difference formula
sinαcosβ=( 1/2)*[sin(α+β)+sin(α-β)]
cosαsinβ=( 1/2)*[sin(α+β)-sin(α-β)]
cosαcosβ=( 1/2)*[cos(α+β)+cos(α-β)]
2. Sum-difference product formula
sinα+sinβ= 2 * sin[(α+β)/2]* cos[(α-β)/2]
sinα-sinβ= 2 * cos[(α+β)/2]* sin[(α-β)/2]
cosα+cosβ= 2 * cos[(α+β)/2]* cos[(α-β)/2]
cosα-cosβ=-2 * sin[(α+β)/2]* sin[(α-β)/2]
3. Sum and difference of two angles
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tan(α+β)= =(tanα+tanβ)/( 1-tanαtanβ)
tan(α-β)=(tanα-tanβ)/( 1+tanαtanβ)
Baidu encyclopedia-special trigonometric function
Baidu encyclopedia-cot