2. Convert the model to a model supported by paddle-lite. Run it in Baidu studio, in the code from the previous step
paddle_lite_opt --model_fie=your model pathway
--param_file=your weight pathway
--valid_targets=arm
--optimize_ out_type=naive_buffer
--optimize_out=The route and name of the output nb model you want
3. Execute the following categorization code to modify the parameters that belong to you
from paddlelite.lite import *
import cv2
import numpy as np
import sys
import time
from PIL import Image
from PIL import ImageFont
from PIL import ImageDraw
# load model
def create_predictor(model_dir):
config = MobileConfig()
config.set_model_from_file( model_dir)
predictor = create_paddle_predictor(config)
return predictor
#Image normalization
def process_img(image, input_ image_size):
origin = image
img = origin.resize(input_image_size, Image.BILINEAR)
resized_img = img.copy()
if img. mode ! = 'RGB':
img = img.convert('RGB')
img = np.array(img).astype('float32').transpose((2, 0, 1)) # HWC to CHW
img -= 127.5
img *= 0.007843
img = img[np.newaxis, :]
return origin,img
# predict
def predict(image, predictor, input_image_size):
# Input data processing
input_tensor = predictor.get_input(0)
input_tensor.resize([1, 3, input_image_size[0], input_image_size[1]])
< p> image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGRA2RGBA))origin, img = process_img(image, input_image_size)
image_ data = np.array(img).flatten().tolist()
input_tensor.set_float_data(image_data)
#Execute the prediction
predictor.run()
#Get the output< /p>
output_tensor = predictor.get_output(0)
print("output_tensor.float_data()[:] : ", output_tensor.float_data()[:])
res = output_tensor.float_data()[:]
return res
# Show results
def post_res(label_dict, res):
print(max(res))
target_ index = res.index(max(res))
print("The result is:" + " " + label_dict[target_index])
if __name__ == '__main__':
# Initial definitions
label_ dict = {0: "metal", 1: "paper", 2: "plastic", 3: "glass"}
image = ". /test_pic/images_orginal/glass/glass300.jpg"
model_dir = ". /trained_model/ResNet50_trash_x86_model.nb"
image_size = (224, 224)
# Initialize
predictor = create_predictor(model_dir)
< p> # Read in the imageimage = cv2.imread(image)
# Predict
res = predict(image, predictor, image_size)
# Show results
post_res(label_ dict, res)
cv2.imshow("image", image)
cv2.waitKey()