Current location - Recipe Complete Network - Dinner recipes - Please use MATLAB to provide the code for the salt and pepper noise removal algorithm using histogram decomposition.
Please use MATLAB to provide the code for the salt and pepper noise removal algorithm using histogram decomposition.

Add and remove salt-and-pepper noise and Gaussian noise, and compare:

I=imread('eight.tif'); % Read in the image

subplot (2,3,1),imshow(I); % Display the original image

title('original'); % Set the image title

J=imnoise(I,'salt & pepper',0.2); % Add salt and pepper noise with a noise density D of 0.2

subplot(2,3,2),imshow(J); % Display the processed image

< p>title('noise image'); % Set image title

text(-20,320,'Salt & Pepper Noise filter');% Add description text

h=; % Template matrix

h=h/8; % Generate filter normalized template

K=conv2(J,h); % Use mean template to filter the image

subplot(2,3,3),imshow(K,[]); % Display the processed image

title('filter image'); % Set the image title

< p>I2=imread('eight.tif'); % Read the image

subplot(2,3,4),imshow(I2); % Display the original image

title ('original'); % Set the image title

J2=imnoise(I2,'gaussian',0.2); % Add Gaussian noise with a mean of 0 and a variance of 0.2

subplot (2,3,5),imshow(J2); % Display the processed image

title('noise image'); % Set the image title

text(-20,320, 'gaussian Noise filter'); % Add description text

h=; % Template matrix

h=h/8; % Generate filter normalized template

< p>K2=conv2(J2,h); % Use the mean template to filter the image

subplot(2,3,6),imshow(K2,[]); % Display the processed image

p>

title('filter image'); % Set the image title

Histogram equalization

I = imread('tire.tif'); % Read the image

J = h

isteq(I); % Histogram equalization

imshow(I) % Display the original image

figure, imshow(J) % Display the processed image

figure; imhist(I,64) % original image histogram

figure; imhist(J,64) % processed image histogram